Thursday, 22 June 2017

As published in Silicon Republic, June 22nd 2017 The Cúram medical devices research centre at NUI Galway has big plans for the future, after securing €22m in EU funding within 10 months of opening. The life sciences sector in Ireland is the place to be, it seems, with biopharmaceutical giants firmly ensconced within the Irish economy, both as a producer and exporter of a variety of drugs. In fact, one of those companies, APC Technologies, has gone so far as to describe Ireland as a ‘phenomenal place’ to be right now. But behind the world of biopharma is another exciting field where medicine and machines combine to create devices capable of these medications in a variety of ways. It is just a matter of trying to find new, interesting and more efficient means to create devices that can, say, help diabetes patients monitor their blood sugar levels with unprecedented accuracy. One such research centre is Cúram at NUI Galway (NUIG), located in a region that has established itself as a life sciences hub over the past few decades. Opened as recently as September, the €68m centre for medical devices research has 24 industry partners and works with six of Ireland’s largest universities. Internationally, this expands to 403 collaborators and, in just a matter of 10 months, the centre has accumulated €22m in EU funding under various research projects, nine of which it is leading. “The money invested in Cúram is pretty close to be repaid from exchequer and non-exchequer funding,” Cúram director Prof Abhay Pandit told Island mentality “We also have collaborations in the US with National Science Foundation (NSF) centres like the metallic biomaterials centre in North Carolina, where we have an NSF and SFI [Science Foundation Ireland] joint project, which has just commenced. “Although Ireland is an island, we don’t have an island mentality because we can’t.” The Galway effect can’t be denied, Pandit added, noting that there are 25,000 people employed within the medtech sector in Ireland, a third of whom are based in the county. “The population of Galway is around 250,000 people so, when you walk on the streets of the city, maybe nearly every tenth person is going to be in the medical devices sector,” he said, with a sense of pride. What a difference 14 years make Pandit has been closely involved with the Irish life sciences sector since he moved here back in 2003 and, in that time, he has seen the country go through some major changes, economically and culturally. Within medtech however, he has seen only an upward trend, despite the 2008 crash. “When I moved to Ireland in 2003, there were only two medical start-up companies in Galway – now we have 20,” he said. One area that Pandit and Cúram will be particularly focused on is chronic diseases. Other growing sectors include tissue engineering, intermediary medicine and neuromodulation. “We don’t have a big critical mass yet [within minimally invasive devices] but we would like to be in that space,” he said, “but we should be there because that’s where the sector is moving.” Growth of IoT in medtech One thing becoming more apparent, however, is the need for all medtech device manufacturers to embrace the potential of the internet of things (IoT). Even now, tech giants such as IBM are using machine learning platforms such as Watson to gather medical data to cure disease, while Apple is collecting health data from iPhones and other devices. With this in mind, other makers need to step up to the mark to allow their devices to be better utilised, for both the patient and the doctor. Where Cúram comes in, Pandit said, is to try to find where the sector is lacking, in order to make a splash in an otherwise competitive space. “[IoT] is a highly competitive space and industry is very interested in it,” he said. “It is going to be a hot area in the future and we are going to be a part of it, but we’re going to need to find a niche to be competitive within it.” Cúram has already undergone collaborations with its sister centre, Insight, on a number of projects. “The process [of setting up Cúram] has been quite exciting and there has been a lot of interest,” Pandit concluded. “It is now a matter of moving that research chain along in terms of what the next generation of products are out there that we could develop.”

Tuesday, 14 February 2017

Dr Manus Biggs lab at CÚRAM has recently acquired a new Photonic Professional GT printer ‘Nanoscribe’ that provides submicrometer features with easy and fast fabrication along the 3D printing workflow. This next generation 3D laser lithography system combines two writing modes in one device: an ultra-precise piezo mode for arbitrary 3D trajectories and the high-speed galvo mode for fastest structuring in a layer-by-layer fashion. The system offers a high degree of automation for direct manufacturing and allows for the fabrication of high-resolution photo masks and other direct write applications.   “This technology allows the development of devices and structures with sub-cellular dimensions and has the potential for impact in a number of projects that are ongoing at CÚRAM” says Dr Biggs, who has established a research programme in nanofabrication of electrically active biomaterials within CÚRAM. His research integrates material science, electronic engineering, top-down nanofabrication techniques and biological functionalization strategies in developing next generation biomaterials platforms.   Currently Dr Biggs is applying nanofabrication techniques to novel classes of electrically conducting polymers to enhance integration of implanted neuroelectrodes or promote functionality of the brain-computer interface. Nanoscribe is the highest resolution commercially available micro 3D printer and provides CÚRAM’s researchers with the technology to manufacturenano-structures with a wide variety of uses, from diagnostics, to bio sensors and 3D scaffolds.

Wednesday, 30 November 2016

CÚRAM have teamed up with US based medical device startup Acuitive Technologies to work on an exciting biomaterial that has the potential to become a paradigm changing material for numerous musculoskeletal applications. The project is titled “The MSC intracellular signalling response to bioactive citric acid composite soft-tissue anchors”. This project will explore the role of citrate-based resorbable polymers in inducing differential cell function and in promoting the activation specific regenerative pathways. Acuitive Technologies, Inc. was founded in 2013 by a highly experienced management team that is devoted to pursuing material technologies improving medical device performance and patient outcomes. Increasing patient activity levels and extended lifespans have heightened the demand for advanced orthopedic implant technology. ATI’s focused approach on implant device innovation is aimed at improving the integration between the body's host tissue systems and such medical devices. Using technologies, evolutionary designs, and effective partnerships, ATI intends to preserve and or regenerate normal host tissue. Citrate polymer is a novel platform technology based on citric acid as the building block material. Citric acid is commonly used in anti-infective, anti-viral and anti-bacterial products. It is also an integral part of human bone (approximate 5%) so that when it is modified by other selected functional molecules, the citrate polymer may mediate bone growth, promote osteo-conductivity, facilitate osteo-inductivity and stimulate local angiogenesis. Furthermore, this citrate polymer can be engineered to be fully resorbed in a time-phased surface erosion process with low chronic response leaving behind chemical by-products mimicking natural host tissue composition.    The lead investigator on this project Manus Biggs, aims to use his expertise in investigating the formulation and fabrication of a regenerative bone-ligament anchor through functional citrate-based resorbable polymers. Yury Rochev will be collaborating on the project. According to James Malayter, Cofounder and Chief Technical Officer of Acuitive, this project is relevant because it represents an opportunity to both improve consistency in clinical results and to lower overall health care costs.  Previous bioresorbables essentially act as spacers in bone that degrade in a more unpredictable fashion in the hope that bone will heal into the degraded space.  Citrate polymer shows promise in being more biocompatible in its degradation and more bioactive, which could result in faster healing with fewer complications of inflammation currently experienced using previous generations of biodegradables. Ultimately, citrate polymer may be able to supplant many metal appliances, and this could dramatically reduce costs of removal surgeries and their complications. Creating outcomes and cost efficiencies becomes a valuable asset in our current and future healthcare environment.

Friday, 14 October 2016

On October 14th we launched the CÚRAM MedTech Minds Industry Breakfast Series. The event held in the Meyrick Hotel, was officially launched by Minister of State for Gaeltacht Affairs and Natural Resources, Seán Kyne T.D. Minister Kyne spoke on the importance of MedTech to our local and national economy and the important role that CÚRAM will play in growing the MedTech ecosystem. Will your project still have value if it takes twice as long and is half as good? The distinguished speaker of the event was Arthur Rosenthal. Arthur has filled senior research and product development executive roles for medical technology companies for over 40 years. He has successfully directed commercialization efforts for hundreds of novel medical products. Being the first speaker in the series it was appropriate that Arthur’s talk was titled “A Real World Perspective of Medical Device Development”. The presentation comprised of three components: Understanding of Successful Commercial Products and Industry Dynamics, Understanding the Nature of Unsolved Problems and Understanding Funding Preferences. Arthur kicked off with an Overview of the Global MedTech landscape which featured insightful M&A Analysis provided by Piper Jaffray. Art went on to highlight the technologies that have been of most interest to the large multinationals and the importance for startups and small SMEs to follow the money. He then went on to discuss the possible way forward and provided a nice overview of quality of life outcomes and explained that universal problems remain development targets. He concluded with a reality check "No Dough, No Go" and the importance for entrepreneurs to ask “Will your project still have value if it takes twice as long and is half as good” More about Arthur:  A former Chief Scientific Officer of Boston Scientific from January, 1994 to January, 2005 and VP Vice President of Research and Development at Johnson and Johnson Medical Products, Inc. from April, 1990 to January, 1994 and more recently Chief Executive Officer of two start-up companies, Labcoat, Ltd. and Cappella, Inc., both developing cardiovascular medical devices. He has been a Professor of Practice in Translational Research in Boston University's College of Engineering since January 2010, where he oversees biomedical engineering innovation. Arthur serves on the CÚRAM Industry Advisor Board .

Friday, 2 September 2016

On September 2nd 2016, the first ever CÚRAM Researcher Orientation Day took place at NUI Galway. Overall, 36 CÚRAM-funded researchers (post-graduate students, post-doctoral researchers and research associates) from all partner universities attended the event. Orientation day also saw the formation of our researcher committees. Emmanouil Kasotakis has taken on the role of Chairperson of The CÚRAM Post-doctoral Council. This council aims to strengthen the career prospects of our senior researchers. The post-graduate students also formed a committee – The CÚRAM Young Researcher Leadership Council. This council aims to increase the communication between post-graduate researchers and to build up a strong and supportive community. The Young Researcher Leadership Council will be organizing a student-led event to coincide with the Annual Retreat in 2017. In the afternoon, we were delighted to have Prof. Brian Trench, science communication guru, speak to us on the topic of “Telling Your Story, Communicating Your Research”. Here, Prof. Trench explored the reasons and methods for taking on public engagement as an opportunity rather than a burden. We had great feedback from members of the ~100-strong audience coming from the schools of science, medicine & engineering at NUI Galway, as well as CÚRAM-funded researchers from across Ireland. Many thanks to Prof. Trench for a really insightful and stimulating presentation which provoked a very interesting discussion!

Wednesday, 22 June 2016

Dr Dimitrios Zeugolis recently hosted the very successful   ‘Ireland - Japan Biomaterials and Tissue Engineering Meeting’ on June 22nd and  23rdin the Hotel Meyrick, Galway. The meeting was opened by Dr. Jim Browne, President of National University of Ireland Galway and Her Excellency Ms Mari Miyoshi, the Ambassador of Japan to Ireland. In attendance was Professor Nobuo Ueno, Director of the Japan Society for the Promotion of Science London and Dr Dara Dunican from Science Foundation Ireland. The Conference was held as part of the Science Foundation Ireland (SFI) International Strategic Cooperation Award (ISCA) Japan programme, which aims to strengthen and improve relationships between researchers in Ireland and Japan. Seven Japanese scientists with expertise in functional biomaterials, tissue engineering, nanotechnology and stem cell technology presented at the conference. They represented prestigious Japanese institutions including the University of Tokyo, Kyoto University and RIKEN. These were complemented by presentations from leading researchers from NUI Galway and other Irish institutions.

Tuesday, 31 May 2016

The first CÚRAM Annual Scientific Retreat took place on May 31st and June 1st in Kilronan Castle, Ballyfarnon, Co. Roscommon. The two-day event saw CÚRAM researchers presenting their work in front of the CÚRAM Scientific Advisory Board. It was an excellent opportunity for exchanges and discussion with CÚRAMs Scientific Advisory Board and keynote speakers including Mr Kevin Bennet, Mayo Clinic, William Wijns, Cardiovascular Center Aalst, Andreas Lendlein, Helmholtz-Zentrum Geesthacht, Fijs van Leeuwen, Leiden University Medical Centre. Academic showcases were presented by Jeremy Simpson, Conway Institute, University College Dublin, Caitriona O’Driscoll from the School of Pharmacy, University College Cork, Madeleine Lowery, School of Electrical, Electronic and Communications Engineering, University College Dublin, Gearóid Ó Laighin from Electronic Engineering, NUI Galway and Martin O’Donnell from the HRB Clinical Research Facility at NUI Galway. Students who presented over the two days included Marc Fernández, Paolo Contessotto, Aniket Kshirsagar, Maura Tilbury, Vivien Stuettgen,  Aitor Larrañaga, Séamus Caulfield, Sarah Jarrin, Jared Gerlach, Ivor Geoghegan, Adam Raymakers and Brendan Dolan Entrepreneurial and industry showcases were presented by Mr Ronan Byrne, Entrepreneur and former CEO of ClearSight Innovations and Mr Ronan Rodgers, Director of Research and Development at Medtronic, Galway. A highlight of the retreat on the first evening were the Science Soundbytes presentations by Juhi Samal, Isma Liza Mohd Isa, Ivor Geoghegan and Dilip Thomas followed by a researcher-led Panel Discussion with the Scientific Advisory Board.

Contact CÚRAM

+353 (0) 91 495833